# Lim x->0 x+tanx / sinx using L'hospitals rule if nessasary?

• Lim x->0 x+tanx / sinx using L'hospitals rule if nessasary?

Answer is 2, no L Hospital required!! Simply split. Lim x->0 (x/sin x)+ lim x->0[tan x/ sin x]=1+lim x->0[1/ cos x]=1+1=2
Positive: 97 %
... so we can use L’Hospital’s rule: lim x!0 x+ tanx sinx H= lim x!0 (x+ tanx)0 (sinx)0 ... using L’Hospital’s rule again: lim x!1 2lnx x = limH x ...
Positive: 94 %

### More resources

IndeterminateForms and L’Hospital’sRule ... 1−sinx does not exist, so L’Hospital’s Rule can’t be applied here. 8. ... Find lim x→0 sinx x ...
Positive: 97 %
... 1/x )Find the limit using L'Hospital's Rule ... This limit is 0/0 again so reapply L'Hopital's rule again `= lim_(x->0) (-xcos(x)-sin(x ... eNotes ...
Positive: 92 %
= lim x→0 ex 2 = 1 2 L’Hˆopital’s Rule works in another case besides 0/0 forms. ... 100 applications of L’Hˆopital’s Rule later = lim x ...
... {x - \sin(x)}{x^2}$Without L'Hospital's Rule? you can use ... x - \tan(x)}{x^2}$ Without L'Hospital's Rule? 0. ... using L'Hospital's rule: \$\lim _{x ...